Lock
0.preface
概述
Lock 是 java.util.concurrent.locks 包 下的接口,Lock 实现提供了比 synchronized 关键字 更广泛的锁操作,它能以更优雅的方式处理线程同步问题。Lock提供了比synchronized更多的功能。
- Lock和ReadWriteLock是两大锁的根接口,Lock代表实现类是ReentrantLock(可重入锁),ReadWriteLock(读写锁)的代表实现类是ReentrantReadWriteLock。
- Lock 接口支持那些语义不同(重入、公平等)的锁规则,可以在非阻塞式结构的上下文(包括 hand-over-hand 和锁重排算法)中使用这些规则。
- ReadWriteLock 接口以类似方式定义了一些读取者可以共享而写入者独占的锁。此包只提供了一个实现 ReentrantReadWriteLock。
- Lock是可重入锁,可中断锁,可以实现公平锁和读写锁,写锁为排它锁,读锁为共享锁。ReentrantLock也是一种排他锁
与synchronized的区别
synchronized是关键字,是JVM层面的,而Lock是一个接口,是JDK提供的API。
当一个线程获取了synchronized锁,其他线程便只能一直等待直至占有锁的线程释放锁。当发生以下情况之一线程才会释放锁:
a.占有锁的线程执行完了该代码,然后释放对锁的占有。
b.占有锁线程执行发生异常,此时JVM会让线程自动释放锁。
c.占有锁线程进入 WAITING 状态从而释放锁,例如在该线程中调用wait()方法等。但是如果占有锁的线程由于要等待IO或者因为其他原因(比如调用sleep方法)而使线程阻塞了,但是又没有释放锁,那么线程就只能一直等待,那么这时我们可能需要一种可以不让线程无期限的等待下去的方法,比如只等待一定的时间(tryLock(long time, TimeUnit unit)或者能被人为中断lockInterrup0tibly(),这种情况我们需要Lock。
当多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作也会发生冲突现象,但是读操作和读操作不会发生冲突现象,但是如果采用synchronized进行同步的话,就会导致当多个线程都只是进行读操作时也只有获取锁的线程才能进行读操作,其他线程只能等待锁释放后才能读,Lock则可以实现当多个线程都只是进行读操作时,线程之间不会发生冲突,例如:ReentrantReadWriteLock()。
可以通过Lock得知线程有没有成功获取到锁 (例如:ReentrantLock) ,但这个是synchronized无法办到的。
锁属性上的区别:synchronized是不可中断锁和非公平锁,ReentrantLock可以进行中断操作并别可以控制是否是公平锁。
synchronized能锁住方法和代码块,而Lock只能锁住代码块。
synchronized无法判断锁的状态,而Lock可以知道线程有没有拿到锁。
在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时,此时Lock的性能要远远优于synchronized。
1. Lock
Lock是一个接口,方法定义如下
1 | void lock() // 如果锁可用就获得锁,如果锁不可用就阻塞直到锁释放,不能被中断 |
实现Lock接口的类有很多,以下为几个常见的锁实现
- ReentrantLock:表示重入锁,它是唯一一个实现了Lock接口的类。重入锁指的是线程在获得锁之后,再次获取该锁不需要阻塞,而是直接关联一次计数器增加重入次数
- ReentrantReadWriteLock:重入读写锁,它实现了ReadWriteLock接口,在这个类中维护了两个锁,一个是ReadLock,一个是WriteLock,他们都分别实现了Lock接口。读写锁是一种适合读多写少的场景下解决线程安全问题的工具,基本原则是:
读和读不互斥、读和写互斥、写和写互斥
。也就是说涉及到影响数据变化的操作都会存在互斥。 - StampedLock: stampedLock是JDK8引入的新的锁机制,可以简单认为是读写锁的一个改进版本,读写锁虽然通过分离读和写的功能使得读和读之间可以完全并发,但是读和写是有冲突的,如果大量的读线程存在,可能会引起写线程的饥饿。stampedLock是一种乐观的读策略,使得乐观锁完全不会阻塞写线程
lock()
对于 Lock 接口而言,获取锁和释放锁都是显式的,不像 synchronized 那样是隐式的,Lock 不会像 synchronized 一样在异常时自动释放锁(synchronized 即使不写对应的代码也可以释放),lock 的加锁和释放锁都必须以代码的形式写出来。
使用 lock() 时必须由我们自己主动去释放锁,因此最佳实践是执行 lock() 后,首先在 try{} 中操作同步资源,如果有必要就用 catch{} 块捕获异常,然后在 finally{} 中释放锁,以保证发生异常时锁一定被释放
1 | Lock lock = ...; |
如果我们不遵守在 finally 里释放锁的规范,就会让 Lock 变得非常危险。 因为你不知道未来什么时候由于异常的发生,导致跳过了 unlock() 语句,使得这个锁永远不能被释放了,其他线程也无法再获得这个锁。 这就是 Lock 相比于 synchronized 的一个劣势,使用 synchronized 时不需要担心这个问题。
与此同时,lock() 方法不能被中断,这会带来很大的隐患:一旦陷入死锁,lock() 就会陷入永久等待,所以一般我们用 tryLock() 等其他更高级的方法来代替 lock()。
tryLock()
tryLock() 用来尝试获取锁,如果当前锁没有被其他线程占用,则获取成功,返回 true,否则返回 false,代表获取锁失败。 相比于 lock(),这样的方法显然功能更强大,我们可以根据是否能获取到锁来决定后续程序的行为。
1 | Lock lock = ...; |
tryLock(long time, TimeUnit unit)
tryLock() 的重载方法是 tryLock(long time, TimeUnit unit),这个方法和 tryLock() 很类似,区别在于 tryLock(long time, TimeUnit unit) 方法会有一个超时时间,在拿不到锁时会等待一定的时间,如果在时间期限结束后,还获取不到锁,就会返回 false;如果一开始就获取锁或者等待期间内获取到锁,则返回 true。
这个方法解决了 lock() 方法容易发生死锁的问题,使用 tryLock(long time, TimeUnit unit) 时,在等待了一段指定的超时时间后,线程会主动放弃这把锁的获取,避免永久等待;在等待的期间,也可以随时中断线程,这就避免了死锁的发生。
lockInterruptibly()
这个方法的作用就是去获取锁,如果这个锁当前是可以获得的,那么这个方法会立刻返回,但是如果这个锁当前是不能获得的(被其他线程持有),那么当前线程便会开始等待,除非它等到了这把锁或者是在等待的过程中被中断了,否则这个线程便会一直在这里执行这行代码。一句话总结就是,除非当前线程在获取锁期间被中断,否则便会一直尝试获取直到获取到为止。
lockInterruptibly() 是可以响应中断的。相比于不能响应中断的 synchronized 锁,lockInterruptibly() 可以让程序更灵活,可以在获取锁的同时,保持对中断的响应。我们可以把这个方法理解为超时时间是无穷长的 tryLock(long time, TimeUnit unit),因为 tryLock(long time, TimeUnit unit) 和 lockInterruptibly() 都能响应中断,只不过 lockInterruptibly() 永远不会超时。这个方法本身是会抛出 InterruptedException
unlock()
对于 ReentrantLock 而言,执行 unlock() 的时候,内部会把锁的“被持有计数器”减 1,直到减到 0 就代表当前这把锁已经完全释放了,如果减 1 后计数器不为 0,说明这把锁之前被“重入”了,那么锁并没有真正释放,仅仅是减少了持有的次数。
2. synchronized 和 Lock 的区别
- 用法区别
synchronized 关键字可以加在方法上,不需要指定锁对象,也可以新建一个同步代码块并且自定义 monitor 锁对象。
Lock 接口必须显示用 Lock 锁对象开始加锁 lock() 和解锁 unlock(),并且一般会在 finally 块中确保用 unlock() 来解锁,以防发生死锁。
synchronized 的加解锁是隐式的,尤其是抛异常的时候也能保证释放锁,但是 Java 代码中并没有相关的体现。
- 加解锁顺序不同
对于 Lock 而言如果有多把 Lock 锁,Lock 可以不完全按照加锁的反序解锁,比如我们可以先获取 Lock1 锁,再获取 Lock2 锁,解锁时则先解锁 Lock1,再解锁 Lock2,加解锁有一定的灵活度
1 | lock1.lock(); |
但是 synchronized 无法做到,synchronized 解锁的顺序和加锁的顺序必须完全相反
1 | synchronized(obj1){ |
那么在这里,顺序就是先对 obj1 加锁,然后对 obj2 加锁,然后对 obj2 解锁,最后解锁 obj1。 这是因为 synchronized 加解锁是由 JVM 实现的,在执行完 synchronized 块后会自动解锁,所以会按照 synchronized 的嵌套顺序加解锁,不能自行控制。
- synchronized 锁不够灵活
一旦 synchronized 锁已经被某个线程获得了,此时其他线程如果还想获得,那它只能被阻塞,直到持有锁的线程运行完毕或者发生异常从而释放这个锁。如果持有锁的线程持有很长时间才释放,那么整个程序的运行效率就会降低,而且如果持有锁的线程永远不释放锁,那么尝试获取锁的线程只能永远等下去。
相比之下,Lock 类在等锁的过程中,如果使用的是 lockInterruptibly 方法,那么如果觉得等待的时间太长了不想再继续等待,可以中断退出,也可以用 tryLock() 等方法尝试获取锁,如果获取不到锁也可以做别的事,更加灵活。
- synchronized 锁只能同时被一个线程拥有,但是 Lock 锁没有这个限制
例如在读写锁中的读锁,是可以同时被多个线程持有的,可是 synchronized 做不到。
- 原理区别
synchronized 是内置锁,由 JVM 实现获取锁和释放锁的原理,还分为偏向锁、轻量级锁、重量级锁。
- 是否可以设置公平/非公平
公平锁是指多个线程在等待同一个锁时,根据先来后到的原则依次获得锁。ReentrantLock 等 Lock 实现类可以根据自己的需要来设置公平或非公平,synchronized 则不能设置。
- 性能区别
在 Java 5 以及之前,synchronized 的性能比较低,但是到了 Java 6 以后,发生了变化,因为 JDK 对 synchronized 进行了很多优化,比如自适应自旋、锁消除、锁粗化、轻量级锁、偏向锁等,所以后期的 Java 版本里的 synchronized 的性能并不比 Lock 差。
Lock 根据实现不同,有不同的原理,例如 ReentrantLock 内部是通过 AQS 来获取和释放锁的。
3. 如何选择synchronized 和 Lock
- 如果能不用最好既不使用 Lock 也不使用 synchronized。因为在许多情况下你可以使用 java.util.concurrent 包中的机制,它会为你处理所有的加锁和解锁操作,也就是推荐优先使用工具类来加解锁。
- 如果 synchronized 关键字适合你的程序, 那么请尽量使用它,这样可以减少编写代码的数量,减少出错的概率。因为一旦忘记在 finally 里 unlock,代码可能会出很大的问题,而使用 synchronized 更安全。
- 如果特别需要 Lock 的特殊功能,比如尝试获取锁、可中断、超时功能等,才使用 Lock。
4. 公平锁和非公平锁
公平锁是指多个线程按照申请锁的顺序来获取锁,线程直接进入队列中排队,队列中的第一个线程才能获得锁。公平锁的优点是等待锁的线程不会饿死。缺点是整体吞吐效率相对非公平锁要低,等待队列中除第一个线程以外的所有线程都会阻塞,CPU唤醒阻塞线程的开销比非公平锁大。
非公平锁是多个线程加锁时直接尝试获取锁,获取不到才会到等待队列的队尾等待。但如果此时锁刚好可用,那么这个线程可以无需阻塞直接获取到锁,所以非公平锁有可能出现后申请锁的线程先获取锁的场景。非公平锁的优点是可以减少唤起线程的开销,整体的吞吐效率高,因为线程有几率不阻塞直接获得锁,CPU不必唤醒所有线程。缺点是处于等待队列中的线程可能会饿死,或者等很久才会获得锁。
直接用语言描述可能有点抽象,下面用一个例子来讲述一下公平锁和非公平锁。
如上图所示,假设有一口水井,有管理员看守,管理员有一把锁,只有拿到锁的人才能够打水,打完水要把锁还给管理员。每个过来打水的人都要管理员的允许并拿到锁之后才能去打水,如果前面有人正在打水,那么这个想要打水的人就必须排队。管理员会查看下一个要去打水的人是不是队伍里排最前面的人,如果是的话,才会给你锁让你去打水;如果你不是排第一的人,就必须去队尾排队,这就是公平锁。
但是对于非公平锁,管理员对打水的人没有要求。即使等待队伍里有排队等待的人,但如果在上一个人刚打完水把锁还给管理员而且管理员还没有允许等待队伍里下一个人去打水时,刚好来了一个插队的人,这个插队的人是可以直接从管理员那里拿到锁去打水,不需要排队,原本排队等待的人只能继续等待。如下图所示:
非公平锁插队的时机
假设当前线程在请求获取锁的时候,恰巧前一个持有锁的线程释放了这把锁,那么当前申请锁的线程就可以不顾已经等待的线程而选择立刻插队。但是如果当前线程请求的时候,前一个线程并没有在那一时刻释放锁,那么当前线程还是一样会进入等待队列。
非公平是ReentrantLock的默认策略.
为什么要有非公平锁
假设线程 A 持有一把锁,线程 B 请求这把锁,由于线程 A 已经持有这把锁了,所以线程 B 会陷入等待,在等待的时候线程 B 会被挂起,也就是进入阻塞状态。
那么当线程 A 释放锁的时候,本该轮到线程 B 苏醒获取锁,但如果此时突然有一个线程 C 插队请求这把锁,那么根据非公平的策略,会把这把锁给线程 C。
这是因为唤醒线程 B 是需要很大开销的,很有可能在唤醒之前,线程 C 已经拿到了这把锁并且执行完任务释放了这把锁。相比于等待唤醒线程 B 的漫长过程,插队的行为会让线程 C 本身跳过陷入阻塞的过程,如果在锁代码中执行的内容不多的话,线程 C 就可以很快完成任务,并且在线程 B 被完全唤醒之前,就把这个锁交出去。
这样是一个双赢的局面,对于线程 C 而言,不需要等待提高了它的效率,而对于线程 B 而言,它获得锁的时间并没有推迟,因为等它被唤醒的时候,线程 C 早就释放锁了,因为线程 C 的执行速度相比于线程 B 的唤醒速度,是很快的。
所以 Java 设计者设计非公平锁,是为了提高整体的运行效率。
公平锁的优点在于各个线程公平平等,每个线程等待一段时间后,都有执行的机会,而它的缺点就在于整体执行速度更慢,吞吐量更小。 相反非公平锁的优势就在于整体执行速度更快,吞吐量更大,但同时也可能产生线程饥饿问题,也就是说如果一直有线程插队,那么在等待队列中的线程可能长时间得不到运行。
tryLock()方法是不公平的 针对 tryLock() 方法,它不遵守设定的公平原则。 例如,当有线程执行 tryLock() 方法的时候,一旦有线程释放了锁,那么这个正在 tryLock 的线程就能获取到锁,即使设置的是公平锁模式,即使在它之前已经有其他正在等待队列中等待的线程,简单地说就是 tryLock 可以插队。
1 | public boolean tryLock() { |
5. 参考资料
https://kaiwu.lagou.com/course/courseInfo.htm?courseId=16#/detail/pc?id=260
https://kaiwu.lagou.com/course/courseInfo.htm?courseId=16#/detail/pc?id=261
https://kaiwu.lagou.com/course/courseInfo.htm?courseId=16#/detail/pc?id=262
https://kaiwu.lagou.com/course/courseInfo.htm?courseId=16#/detail/pc?id=265
https://kaiwu.lagou.com/course/courseInfo.htm?courseId=16#/detail/pc?id=266